Moonlighting functions of the NRZ (mammalian Dsl1) complex

نویسندگان

  • Mitsuo Tagaya
  • Kohei Arasaki
  • Hiroki Inoue
  • Hana Kimura
چکیده

The yeast Dsl1 complex, which comprises Dsl1, Tip20, and Sec39/Dsl3, has been shown to participate, as a vesicle-tethering complex, in retrograde trafficking from the Golgi apparatus to the endoplasmic reticulum. Its metazoan counterpart NRZ complex, which comprises NAG, RINT1, and ZW10, is also involved in Golgi-to-ER retrograde transport, but each component of the complex has diverse cellular functions including endosome-to-Golgi transport, cytokinesis, cell cycle checkpoint, autophagy, and mRNA decay. In this review, we summarize the current knowledge of the metazoan NRZ complex and discuss the "moonlighting" functions and intercorrelation of their subunits.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A new role for RINT-1 in SNARE complex assembly at the trans-Golgi network in coordination with the COG complex

Docking and fusion of transport vesicles/carriers with the target membrane involve a tethering factor-mediated initial contact followed by soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE)-catalyzed membrane fusion. The multisubunit tethering CATCHR family complexes (Dsl1, COG, exocyst, and GARP complexes) share very low sequence homology among subunits despite likel...

متن کامل

The Dsl1 protein tethering complex is a resident endoplasmic reticulum complex, which interacts with five soluble NSF (N-ethylmaleimide-sensitive factor) attachment protein receptors (SNAREs): implications for fusion and fusion regulation.

Retrograde vesicular transport from the Golgi to the ER requires the Dsl1 tethering complex, which consists of the three subunits Dsl1, Dsl3, and Tip20. It forms a stable complex with the SNAREs Ufe1, Use1, and Sec20 to mediate fusion of COPI vesicles with the endoplasmic reticulum. Here, we analyze molecular interactions between five SNAREs of the ER (Ufe1, Use1, Sec20, Sec22, and Ykt6) and th...

متن کامل

Golgi-to-endoplasmic reticulum (ER) retrograde traffic in yeast requires Dsl1p, a component of the ER target site that interacts with a COPI coat subunit.

DSL1 was identified through its genetic interaction with SLY1, which encodes a t-SNARE-interacting protein that functions in endoplasmic reticulum (ER)-to-Golgi traffic. Conditional dsl1 mutants exhibit a block in ER-to-Golgi traffic at the restrictive temperature. Here, we show that dsl1 mutants are defective for retrograde Golgi-to-ER traffic, even under conditions where no anterograde transp...

متن کامل

A Structure-Based Mechanism for Vesicle Capture by the Multisubunit Tethering Complex Dsl1

Vesicle trafficking requires membrane fusion, mediated by SNARE proteins, and upstream events that probably include "tethering," an initial long-range attachment between a vesicle and its target organelle. Among the factors proposed to mediate tethering are a set of multisubunit tethering complexes (MTCs). The Dsl1 complex, with only three subunits, is the simplest known MTC and is essential fo...

متن کامل

ER-associated retrograde SNAREs and the Dsl1 complex mediate an alternative, Sey1p-independent homotypic ER fusion pathway

The peripheral endoplasmic reticulum (ER) network is dynamically maintained by homotypic (ER-ER) fusion. In Saccharomyces cerevisiae, the dynamin-like GTPase Sey1p can mediate ER-ER fusion, but sey1Δ cells have no growth defect and only slightly perturbed ER structure. Recent work suggested that ER-localized soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) mediate...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2014